Q. 2 a. Perform the following conversions:
(i) $(2496)_{10}=(?)_{8}$
(ii) $(\mathrm{CF} 3 \mathrm{D})_{16}=(?)_{10}$
(iii) $(11011.0111)_{2}=(?)_{10}$

Answer:
i. $(2496)=2496 / 8$ is 312 vith rennainder $312 / 8$ is 39 with rennainder O $39 / 8$ is 4 with remainder 7
$4 / 8$ is 0 vith remainder 4
Result (470O)is
ii. (CN3D) $=12 \times 16^{3}+15 \times 16^{2}+3 \times 16^{1}+13 \times 16^{0}$
$=(53053) 10$

b. Draw the functional diagram of a digital computer and explain the function of each block.
Answer: Page Number 16 of Text Book
c. Give examples of parallel and serial transmission in digital systems.

Answer: Page Number 13-14 of Text Book
Q. 3 a. What is the need to minimize a Boolean expression? What are the methods used to achieve these.

Answer:

To reduce the hardware requirement, resulting in the same truth table.
Various methods:
I. Using theorems and postulates
II. K-Map
III. Tadular forms

b. Minimize the following Boolean expressions and write the truth tables to show that the minimized expressions will produce the same output as the expanded expressions.
(i) $\mathrm{F}=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{5}+\mathrm{m}_{7}+\mathrm{m}_{8}+\mathrm{m}_{10}+\mathrm{m}_{13}+\mathrm{m}_{15}$
(ii) $y=\left(A^{\prime}+B\right)\left(A^{\prime}+B+D\right)\left(C+D^{\prime}\right)$

Answer:

b. Minimize the following Boolean expressions and write the truth tables to show that the minimized expressions will produce the same output as the expanded expressions.
i. $F=m_{0}+m_{2}+m_{5}+m_{7}+m_{8}+m_{10}+m_{13}+m_{15}$

B	A	B	\bar{B}	$\bar{B} A$
	$B A$	B	\bar{A}	
$D \bar{C}$	1	0	0	1
$D C$	0	1	1	0
$D C$	0	1	1	0
$D \bar{C}$	1	0	0	1

$$
\begin{aligned}
& F=A C+\bar{A} \bar{C} \text { - (2) } \\
& \text { AlSO To WRITE TT FOR } \\
& \text { equation (1) and (2) }
\end{aligned}
$$

Q. 4 a. Draw the logic diagram of eight bit serial in/parallel out shift register and explain its operation.
Answer: Page Number 443, 444 \& 445 of Text Book
b. What is meant by multiplexer? List out its various applications.

Answer: Page Number 443, 444 \& 445 of Text Book
Q. 5 a. Distinguish between asynchronous and synchronous Flip Flops. Convert an asynchronous RS flip flop into synchronous latch.
Answer: Page Number 176-181 of Text Book
b. Design a decade counter using JK Flip Flops and draw its timing diagram.

Answer: Page Number 299 of Text Book
c. What is the need of Schmitt trigger devices, explain with waveforms.

Answer: Page Number 214-215 of Text Book
Q. 6 a. Build a Full Adder using two Half Adders and prove that the addition of two numbers results in subtraction when 2's complement is used.
Answer: Page Number 264-265 of Text Book
b. If a single bit Full Adder takes 8 sec for addition, calculate the total addition time taken to add two numbers having hundredth weight. Suggest a method of speeding up the addition.

Answer:

Ans: $t d=8$ nsec \quad Hundredth weight addition of decimal requires 3 4bit parallel adders. Thus total delay is sum of delays of each of the adders Which will amount to $(4 \times 3) \times 8=96$ nsec
To reduce the delay Carry look ahead circuit to be used. (Explanatiou)
Q. 7 a. Design a seven segment decoder that is required to drive an active low seven segment display.

Answer:

$$
a=\bar{D}_{3} \bar{D}_{2} \bar{D}_{1} D_{0}+D_{2} \bar{D}_{0}
$$

	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}_{1}$	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}_{1}$
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}^{\prime}{ }_{3}$	0	C	0	0
$\mathrm{D}_{2} \mathrm{D}^{\prime}$	D	0	0	
$\mathrm{D}_{2} \mathrm{D}_{3}$	\searrow	\times	\times	\times
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}_{3}$	0	0	\times	\times

$$
c=\bar{D}_{0}{\overline{D_{2}} \bar{D}_{3}+\bar{D}_{0} \bar{D}_{1} \bar{D}_{3}}^{2}
$$

	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}_{1}$	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}_{1}$			
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}^{\prime}{ }_{3}$	D	0	0	1			
$\mathrm{D}_{2} \mathrm{D}^{\prime}{ }_{3}$	1	0	0	0			
$\mathrm{D}_{2} \mathrm{D}_{3}$	\times	\times	\times	\times			
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}_{3}$	0	0	\times	\times			
e						$=D_{1} \mathrm{D}_{3}+\mathrm{D}$	0

	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}_{1}$	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}_{1}$
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}^{\prime}{ }_{3}$	1	1	1	1
$\mathrm{D}_{2} \mathrm{D}_{3}$	1	1	1	0
$\mathrm{D}_{2} \mathrm{D}_{3}$	\times	\times	\times	0
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}_{3}$	0	1	\searrow	\times

$b=D_{0} \bar{D}_{1} D_{2}+\bar{D}_{0} D_{1} D_{2}+\bar{D}_{0} \bar{D}_{1} \bar{D}_{2} \bar{L}$

	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}^{\prime}{ }_{1}$	$\mathrm{D}_{0} \mathrm{D}_{1}$	$\mathrm{D}_{0} \mathrm{D}_{1}$	$\mathrm{D}^{\prime}{ }_{0} \mathrm{D}_{1}$
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}^{\prime}{ }_{3}$	1	1	1	1
$\mathrm{D}_{2} \mathrm{D}^{\prime}{ }_{3}$	0	0	1	0
$\mathrm{D}_{2} \mathrm{D}_{3}$	\times	x	\times	\times
$\mathrm{D}^{\prime}{ }_{2} \mathrm{D}_{3}$	0	0	\times	\times

b. What are the advantages and disadvantages of a synchronous counter over an asynchronous counter?
Answer:

c. How many AND gates are required to decode completely all of the states of a MOD-32 binary counter? What are the inputs to the gate that decodes for the count of 21 ?
Answer: Page Number 391 of Text Book
Q. 8 a. How will you read and write into a 16×4 RAM? Draw a schematic of this RAM and explain the process.

Answer:

b. Design a mod 7 synchronous counter and calculate its maximum frequency of operation if the flip flop delay time is 8nano sec. and gate delay time is 5 nano sec.

Answer:

Q. 9 Explain the principle of the following:
(i) Magnitude Comparator
(ii) CPU and memory interface
(iii) Johnson Counter
(iv) DRAM

Answer:

(i) Page Number 524-527 of Text Book
(ii) Page Number 630-632 of Text Book
(iii) Page Number 342-344 of Text Book
(iv) Page Number 671-674 of Text Book

TEXT BOOK

Digital Systems - Principles and Applications, Ronald J Tocci, Neal S. Wildmer, Gregory L. Moss, Ninth Edition, Pearson Education, 2008

